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Abstract

Dispersion of spray droplets and the modulation of turbulence in the ambient gas by the dispersing droplets are two
coupled phenomena that are closely linked to the evolution of global spray characteristics, such as the spreading rate
of the spray and the spray cone angle. Direct numerical simulations (DNS) of turbulent gas flows laden with sub-Kol-
mogorov size particles, in the absence of gravity, report that dispersion statistics and turbulent kinetic energy (TKE) evolve
on different timescales. Furthermore, each timescale behaves differently with Stokes number, a non-dimensional flow
parameter (defined in this context as the ratio of the particle response time to the Kolmogorov timescale of turbulence)
that characterizes how quickly a particle responds to turbulent fluctuations in the carrier or gas phase. A new dual-time-
scale Langevin model (DLM) composed of two coupled Langevin equations for the fluctuating velocities, one for each
phase, is proposed. This model possesses a unique feature that the implied TKE and velocity autocorrelation in each phase
evolve on different timescales. Consequently, this model has the capability of simultaneously predicting the disparate
Stokes number trends in the evolution of dispersion statistics, such as velocity autocorrelations, and TKE in each phase.
Predictions of dispersion statistics and TKE from the new model show good agreement with published DNS of non-evap-
orating and evaporating droplet-laden turbulent flow.
� 2006 Elsevier Ltd. All rights reserved.
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1. Background

The evolution of a fuel spray in an internal combustion engine is strongly influenced by its interaction with
the rapidly changing turbulent gas phase in the combustion chamber. Turbulence in the ambient gas directly
affects the spreading rate of a spray which in turn affects the spray penetration length and spray cone angle.
Dispersing droplets in turn amplify or suppress the turbulence in the ambient gas, thereby coupling the effects
of turbulence and droplet dispersion.
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Direct numerical simulations (DNS) of decaying particle-laden turbulence performed in the absence of
gravity report that the timescale for interphase turbulent kinetic energy (TKE) transfer is different from the
timescale associated with particle dispersion, and that the trends of these timescales are also different for vary-
ing Stokes numbers. Particles with high Stokes number lose energy faster than particles with low Stokes num-
ber in freely decaying turbulence (Sundaram and Collins, 1999). On the other hand, particles with high Stokes
number lose correlation with their initial velocities slower than particles with low Stokes number in stationary
turbulence (Mashayek et al., 1997; Squires and Eaton, 1991). The disparate behavior of the velocity autocor-
relation and TKE timescales affects the dispersion characteristics of a spray. Turbulence models for spray
computations (or particle-laden turbulent flows, in general) must be capable of simultaneously capturing these
disparate timescale trends with Stokes number, in order to be predictive.

Experimental evidence for the dependence of the evolution timescales of velocity autocorrelation and inter-
phase TKE transfer on Stokes number is available in the literature (Snyder and Lumley, 1971; Wells and
Stock, 1983; Groszmann and Rogers, 2004). However, unlike in the DNS studies, it is difficult to isolate phys-
ical mechanisms that affect these timescales in experiments. Also given the uncertainty involved in experiments
in extracting velocity autocorrelations and TKE in dispersed two-phase flows, the canonical DNS cited earlier
are of intrinsic value to the modeling community for two principal reasons. Firstly, crossing trajectory effects
due to particle drift, and particle inertia effects are easily isolated in numerical computations. Secondly, models
for individual terms in the governing equations for dispersed two-phase flows, like the interphase TKE and
mass transfer, can be tested in isolation by comparing with corresponding terms extracted from DNS. The
same is not possible with experiments. Thus, reproducing results from such canonical two-phase DNS consti-
tutes an important first step in validating multiphase flow turbulence models.

In the Lagrangian–Eulerian (LE) representation of two-phase flows, the dispersed phase is modeled using
computational particles whose velocities evolve according to a drag model of the form
1 Als
dVp

dt
¼ Uf � Vp

sp

CdðRedÞ þ Fadd; ð1Þ
and whose positions evolve according to
dXp

dt
¼ Vp; ð2Þ
where Vp is the instantaneous particle velocity, Uf is the instantaneous gas-phase velocity,1 sp ¼
ðqdd2

pÞ=ðqf18mfÞ is the particle response timescale, Xp is the particle position and Fadd represents additional
terms that include lift and body forces. The instantaneous gas-phase velocity Uf is decomposed into a mean
hUfi and a fluctuating component u0f . Here, qd and qf are the thermodynamic densities of the dispersed phase
and fluid phase, respectively, dp is the particle or droplet diameter and mf is the kinematic viscosity of the fluid
phase. A drag coefficient Cd that depends on the droplet Reynolds number Red is generally included as shown.
The major research effort in modeling turbulent two-phase flows using the LE representation has been directed
towards arriving at a suitable model for Uf. The principal LE modeling studies that are relevant to dispersion
and TKE evolution are reviewed here.

Lu (1995) uses a time-series analysis involving fluid-phase temporal and spatial Eulerian velocity correla-
tions to arrive at a stochastic model for the fluid velocity at the particle location, in the limit of one-way cou-
pled turbulence. Spray droplet interactions with the gas phase are, however, strongly two-way coupled.
Nevertheless, testing the behavior of a two-phase model in the limit of one-way coupled spray configurations
is indeed necessary. Lu reports good agreement between model results and theoretical results of Csanady
(1963), and particle-laden grid-generated turbulence results of Snyder and Lumley (1971) in predicting particle
diffusion coefficients and velocity autocorrelations. Mashayek (1999) used Lu’s time-series approach to predict
particle-velocity autocorrelation functions and asymptotic diffusion coefficients for non-evaporating and evap-
orating droplets laden in one-way coupled stationary turbulence, again reporting overall reasonable agree-
ment with DNS data (Mashayek et al., 1997). An extension of the time-series model has been tested by
Gao and Mashayek (2004b) in compressible homogeneous shear flows with interphase mass transfer due to
o sometimes referred to as the gas-phase velocity ‘‘seen’’ by the particles.
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evaporating droplets. They report good agreement of predicted droplet velocity correlations and droplet-fluid
velocity cross-correlations with DNS of evaporating droplets in a low Mach number turbulent shear flow
(Mashayek, 1998). Pozorski and Minier (1999) modified the Lagrangian integral timescale in the generalized
Langevin model proposed by Haworth and Pope (1986) to arrive at the fluid velocity ‘‘seen’’ by the particles.
To our knowledge, no validation tests are available in the literature that quantify the predictive capability of
this model in canonical particle-laden flows. Chagras et al. (2005) employ a Langevin-type equation that uses
the Lagrangian integral timescale of the fluid ‘‘seen’’ by the particles and the fluid-phase Reynolds stresses to
arrive at a model for u0f . They analyze several cases of two-way coupled gas–solid pipe flow with large mass
loading and report overall agreement of temperature profiles and instantaneous velocities with experimental
results. Chen and Pereira (1997) use an assumed probability density function (pdf) for the spatial distribution
of the particles whose variance evolves in time by an ordinary differential equation containing an assumed
fluid-phase Lagrangian velocity autocorrelation of the Frenkiel form (Gouesbet and Berlemont, 1999). They
report good match of predicted dispersed-phase velocities from their two-way coupled simulations with results
from experiments conducted on particle-laden planar mixing layers and co-flowing planar jets.

With the exception of Mashayek (1999), there is no evidence in the literature of tests conducted with the
aforementioned models in simple canonical two-phase flows (such as stationary or freely decaying particle-
laden turbulence) to test their capability in simultaneously capturing the energy and dispersion timescales
as observed in DNS. However, the time series model (Lu, 1995) used by Mashayek (1999) relies on statistics
of the fluid phase that are valid only in the limit of one-way coupled two-phase flows. Extending the time series
model to two-phase flows with significant two-way coupling effects will require the knowledge of the Eulerian
spatial correlation of gas-phase velocity which is a non-trivial quantity to measure or model in such flows.
Also, the extension of the time-series model proposed by Gao and Mashayek (2004a,b) involves correlations
among the velocity components, temperature and mass fraction, with the assumption that all these correla-
tions evolve on the same Eulerian fluid integral timescale.

Another common feature of the LE models cited above is the use of the particle response time sp as the
timescale for both interphase momentum and TKE transfer. Recently, a representative LE model (Amsden
et al., 1989) was tested in freely decaying turbulence laden with sub-Kolmogorov size particles (Pai and Subr-
amaniam, 2006). It was shown in that study that LE models based on the particle response timescale fail to
accurately capture trends in the evolution of TKE in both phases with varying Stokes numbers, when tested in
the canonical problem. This observation pointed to a need for improvement in the predictive capability of
existing LE models. A multiscale interaction timescale to replace sp was proposed (Pai and Subramaniam,
2006) that captured trends in the evolution of TKE with varying Stokes number as seen in the DNS.

The primary objective of this work is to propose a new model called the dual-timescale Langevin model
(DLM). In this model, we adopt a Lagrangian–Lagrangian description of both the fluid and dispersed phases.
Unlike the models cited earlier, we do not use Eq. (1) to evolve the particle velocities, and also the implied
TKE in either phase evolves on a timescale derived by taking into account the multiscale nature of droplet-
turbulence interaction (Pai and Subramaniam, 2006). Furthermore, the novel feature of this model is the
existence of dual timescales in a single model that enables the model to simultaneously capture the disparate
Stokes number trends in the evolution of TKE and also particle dispersion characteristics in both phases. It is
important to note that although Langevin models have been successful in predicting turbulent reactive flows
(Pope, 2000, 1985), extending these models to two-phase flows is not straightforward. This is because single-
phase Langevin models are based on a single timescale and such models are clearly incapable of simulta-
neously capturing the disparate timescales of TKE and autocorrelation observed in two-phase DNS.
However, Langevin models have the advantage that they are more amenable to analysis than existing LE mod-
els based on stochastic white noise (Gosman and Ioannides, 1983; Amsden et al., 1989). A second objective of
this work, and a guiding principle for the model development, is to clearly identify terms in the governing
equations of the dispersed phase that require modeling.

The rest of the paper is organized as follows. The new stochastic model is introduced and implied evolution
equations for the statistics of the fluid and dispersed phases are derived in Section 2. A new hypothesis for
modeling the interphase TKE transfer called the Equilibration of Energy (EoE) concept is presented in Section
3. The rationale underlying the specification of model constants is explained in Section 4. Test cases for which
DNS data are available from Mashayek et al. (1997) for both non-evaporating and evaporating droplet-laden
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stationary turbulence are described in Section 5. Model predictions for these test cases are reported in Section
6. An assessment of the model and the DNS data are presented in Section 7. The final section presents the
principal conclusions of the study.

2. Dual-timescale Langevin model (DLM)

A new stochastic model called the dual-timescale Langevin model (DLM) is proposed for homogeneous
turbulent two-phase flows. This model consists of a system of stochastic differential equations (SDE) for
the modeled fluctuating Lagrangian gas-phase velocity u and fluctuating Lagrangian dispersed-phase velocity
v. The proposed system of SDEs is
2 Th
3 Th
dui ¼ �
1

2s1

þ 1

2
þ 3

4
C0

� �
ef

kf

� �
uidt þ C0ef þ
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i ð3Þ

dvi ¼ �
1

2s3
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ke
d � kd

s4

� �� �1=2

dW v
i ; ð4Þ
where s1, s2, s3 and s4 are timescales that appear in the drift and diffusion coefficients2 of each SDE, while
dW u

i and dW v
i are independent Wiener processes (Kloeden and Platen, 1992). The subscript i denotes the

Cartesian components. The TKE in the dispersed phase is denoted kd and the TKE in the gas phase is denoted
kf with a superscript ‘e’ to denote their ‘equilibrium’ values (the concept of ‘equilibrium’ is explained in Section
3).3 Also, ef is the gas-phase dissipation enhanced by the presence of the dispersed phase. The constant
C0 = 2.1, which is identical to that used in the Simplified Langevin model (SLM) (Pope, 2000). Mean velocity
and, hence mean slip in either phase is assumed to be zero for simplicity, although this is not an inherent lim-
itation of DLM. The fluid-phase SDE can be viewed as an extension of the SLM (Pope, 2000; Haworth and
Pope, 1986) to two-phase flows, but with an important difference being the introduction of drift and diffusion
timescales that are different from each other. Also, additional terms involving ke

f and ke
d (in parentheses) that

represent interphase interactions have been added. The coupling between the two phases is only through mo-
ments of the velocities in each phase like TKE (kf and kd) and the dissipation ef, and not explicitly through the
instantaneous values of ui and vi.

One can derive the implied evolution equations for the TKE in the fluid phase, defined as kf = (1/2)huiuii
(where the averaging is performed over an ensemble of realizations) and the TKE in the dispersed phase,
defined as kd = (1/2)hvivii, from Eqs. (3) and (4), respectively, to be
dkf

dt
¼ ke

f � kf

s2

� �
� ef ð5Þ

dkd

dt
¼ ke

d � kd

s4

� �
: ð6Þ
Of the four timescales present in Eqs. (3) and (4), only s2 and s4 appear in the above equations. The equilib-
rium energies, ke

f and ke
d, are related to each other as will be shown later, and so the evolution of kf and kd are

coupled through these terms. It has to be emphasized here that the interphase TKE transfer timescales s2 and
s4 are not equal to sp although they do depend on this timescale. Note that for widely-used LE models, the
interphase TKE transfer evolves on the particle response timescale sp which was found to be inadequate to
capture the multiscale nature of particle–turbulence interaction (Pai and Subramaniam, 2006). The exact form
of these timescales will be presented in Section 4.

2.1. Stationary turbulence limit

In the context of two-phase flows, an important canonical problem is homogeneous turbulence in which the
fluid phase turbulence is artificially forced to remain stationary, while the dispersed phase evolves to its
e terms ‘drift’ and ‘diffusion’ are used in the sense of stochastic differential equation theory.
e subscript f stands for the gas phase or fluid phase, and the subscript d stands for the dispersed phase.
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stationary state. Several studies have been performed in this important limiting case using DNS (Squires and
Eaton, 1991; Mashayek et al., 1997), making it an ideal case for model validation.

In the limit of stationary turbulence, the drift coefficient in the fluid phase SDE in Eq. (3) is modified along
the lines of the SLM proposed for single-phase stationary turbulence (Pope, 2000) as
dui ¼ �
1

2s1

þ 3

4
C0

ef

kf

� �
uidt þ C0ef þ

2

3

kf

s1

þ 2

3

ke
f � kf

s2

� �� �1=2

dW u
i : ð7Þ
With this modification, the fluid phase dissipation drops out of the implied evolution equation for the TKE in
the fluid phase, which now reads
dkf

dt
¼ ke

f � kf

s2

� �
: ð8Þ
In the limit of two-way coupled homogeneous particle-laden stationary turbulence, Eqs. (8) and (6) form the
modeled governing equations for the TKE in the fluid and dispersed phases, respectively. The only term
appearing on the right-hand side of these equations is the TKE transfer due to inter-phase interactions.

Eq. (8) is a physically consistent model for kf in an artificially forced two-phase flow system where energy is
added at the large scales to exactly balance the viscous dissipation, which now includes additional dissipation
due to the presence of the particles in the fluid phase. DLM predicts that, in the case of stationary turbulence,
the TKE in the fluid phase would evolve to an equilibrium value ke

f over a timescale s2. Statistics related to
dispersion of spray droplets, as implied by DLM, are derived next.

2.2. Implied Lagrangian velocity autocorrelation

In stationary isotropic turbulence, which is the main focus of this study, the Lagrangian velocity autocor-
relation denoted Rbij

ðsÞ is given as (Hinze, 1975)
Rbij
ðsÞ ¼

hciðt0Þcjðt0 þ sÞi
hciðt0Þcjðt0Þi

; ð9Þ
where t0 can be any initial time after the system reaches stationarity and s is the separation time. No summa-
tion is implied over repeated indices. Here, c stands for either u or v. The Lagrangian autocorrelation is simply
a normalized autocovariance and gives a measure of how quickly the fluid particle or droplet loses correlation
with its velocity at some earlier time. Note that for isotropic turbulence, Rbij

¼ 0, for i 5 j, and Rbii
¼ Rbjj

, for
i = j = {1,2,3}.

The evolution equation for the fluid velocity autocovariance implied by DLM for the stationary case is
dhuiðt0ÞujðtÞi
dt

¼ � 1

2s1

þ 3

4
C0

ef

kf

� �
huiðt0ÞujðtÞi; ð10Þ
while the evolution equation for the dispersed-phase velocity autocovariance is
dhviðt0ÞvjðtÞi
dt

¼ � 1

2s3

hviðt0ÞvjðtÞi; ð11Þ
where t = t0 + s.
A striking feature of DLM is that Eqs. (5) and (6) depend on the timescales s2 and s4, respectively, while

Eqs. (10) and (11) depend on timescales s1 and s3, respectively. In DLM, therefore, the evolution of TKE can
be constructed to behave differently from the evolution of the velocity autocovariance. In model proposals that
use the generalized Langevin model (Pozorski and Minier, 1999), however, the implied TKE in the fluid phase
and the velocity autocorrelation evolve over the same timescale, namely the Lagrangian integral timescale.

The dispersion of droplets or fluid particles is characterized by the diffusion coefficient tensor associated
with phase b, denoted abij

. In the isotropic case, the diagonal components of the diffusion coefficient tensor
are all identical viz. ab11

¼ ab22
¼ ab33

¼ ab. In the stationary case, the diffusion coefficient tensor and the
Lagrangian velocity autocorrelation tensor are related by
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abij
ðtÞ ¼ hciðt0Þcjðt0Þi

Z t

0

Rbij
ðt0Þdt0 ð12Þ
(again, no summation is implied over repeated indices).

3. Equilibration of energy (EoE) concept

The right-hand sides of Eqs. (8) and (6) are models for the interphase TKE transfer, and are based on the
EoE concept that was proposed by Xu and Subramaniam (2006). This concept is briefly reviewed here for the
sake of completeness.

In order to explain the EoE concept, the following system of model equations for the evolution of TKE in a
dilute homogeneous two-phase flow system (with no interphase mass transfer) is proposed
def

dt
¼ Pkf

� qfhfef ð13Þ

ded

dt
¼ Pkd

; ð14Þ
where Pkf
¼ ðee

f � efÞ=sp and Pkd
¼ ðee

d � edÞ=sp are the interphase TKE transfer terms. Here, sp is the inter-
phase TKE transfer timescale, while ef = qfhfkf and ed = qdhdkd are the specific fluid phase and dispersed phase
energies, respectively, and ee

f ¼ qfhfk
e
f and ee

d ¼ qdhdke
d are the equilibrium specific TKEs in the gas phase and

dispersed phase, respectively. The volume fractions of the fluid phase and dispersed phase are denoted hf and
hd = 1 � hf, respectively. Collisions among particles are elastic and hence no dissipation is considered in the
dispersed phase.

Adding Eqs. (13) and (14) results in
dem

dt
¼ �qfhfef ;
where em = qmkm = ef + ed = qfhfkf + qdhdkd is the mixture energy in the two-phase flow system and qm is the
mixture density defined as qm = qdhd + qfhf. It is assumed that Pkf

¼ �Pkd
, which implies that the interphase

TKE transfer is conservative. This assumption is valid for rigid particle-laden turbulent flows. However, as
will be shown later, this assumption can be extended to the droplet-laden turbulent flow considered in this
study.

The EoE concept states that if
dem

dt
¼ �qfhfef þFf ¼ 0; ð15Þ
where Ff is the external artificial forcing required to balance the dissipation in order to maintain dem/dt = 0,
then the specific dispersed phase TKE and specific fluid phase TKE evolve to their respective equilibrium val-
ues. Note that the modeled dissipation in the carrier phase is the sum of the single-phase dissipation rate and
the additional dissipation due to the presence of boundary layers around the dispersed particles.

Equilibrium values of the specific fluid-phase TKE ee
f and specific dispersed-phase TKE ee

d are determined
by a model constant Ck defined as
ee
d

em

¼ Ck;
ee

f

em

¼ 1� Ck: ð16Þ
Since Ck represents the fraction of the specific mixture energy present in the dispersed phase at equilibrium, it
must lie between zero and unity.

An implicit dependence of Ck on mass loading / of the two-phase system can be deduced by rewriting Eq.
(16) as
Ck ¼
qdhdke

d

qmkm

¼ qdhdke
d

qfhfk
e
f þ qdhdke

d

¼
/

ke
d

ke
f

1þ /
ke

d

ke
f

; ð17Þ
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where / = qdhd/(qfhf) is the mass loading of the two-phase system. The constant Ck can also depend on other
non-dimensional quantities that characterize this homogeneous turbulent two-phase flow system such as
Stokes number Stg = sp/sg (where sg is the Kolmogorov timescale), particle Reynolds number Red, initial
kd/kf ratio, dp/g ratio (where g is Kolmogorov length scale of turbulence) and hd.

For a constant mass loading /, decreasing Stokes number should drive the dispersed-phase equilibrium
TKE closer to the fluid-phase equilibrium TKE and in the limit of zero Stokes number, the two equilibrium
energies ke

f and ke
d should match. This observation imposes a constraint on Ck in the limiting case of zero

Stokes number and from Eq. (17) we find
lim
Stg!0

Ck ¼
/

1þ /
: ð18Þ
The EoE concept can be extended to the case where the turbulence decays in time (no artificial forcing of the
mixture energy in the two-phase flow system). However, a model for the dissipation rate needs to be added to
the system of equations (cf. Eqs. (13) and (14)), which now reads
def

dt
¼ Pkf

� qfhfef

ded

dt
¼ Pkd

def

dt
¼ �Ce2

e2
f

kf

þ Cs

ef

kf

ke
f � kf

sp

� �
;

where ef is the fluid-phase dissipation evolving according to a modified single-phase e equation (Xu and Subr-
amaniam, 2006). The model constant Cs is chosen to be 1.5 and Ce2 is 1.92.
3.1. Applicability of the EoE concept to droplet-laden turbulent flows

3.1.1. Non-evaporating droplets

Certain assumptions, like conservative interphase TKE transfer and zero dissipation in the dispersed phase,
that are used in arriving at the model equations Eqs. (13) and (14) for flows with rigid solid particles need to be
revisited and carefully understood when applied to non-evaporating droplet-laden flows. For this we take as
reference the exact evolution equation for the dispersed-phase TKE using the Eulerian–Eulerian (EE)
approach Eq. (A.7) presented in the Appendix A (see Xu (2004) for more details) for a homogeneous two-
phase flow. The important terms that appear in this equation are:

(a) the interphase TKE transfer hu00di
ðSMdi � U iSqd

Þi where SMdi is the interphase momentum transfer given
by Eq. (A.9) in Appendix A, Ui is the instantaneous velocity in the two-phase flow system, and Sqd

is
the interphase mass transfer given by Eq. (A.10) in Appendix A,

(b) contribution to the dispersed phase TKE due to interphase mass transfer ð1=2Þhu00di
u00di

Sqd
i � ~kdhSqd

i,
where ~kd is the density-weighted TKE in the dispersed phase given by Eq. (A.6), and

(c) the term hu00di
oðIdski=oxkÞi that contains the dissipation in the dispersed phase, where u00di

is the fluctuating
velocity with respect to the volume-averaged velocity in the dispersed phase given by Eq. (A.8) in Appen-
dix A, Id is the indicator function (Drew, 1983) which is unity in the dispersed phase and zero in the fluid
phase and Idski is the stress tensor in the dispersed phase.

The reader is referred to Appendix A for more details on these terms. For non-evaporating droplets, Sqd
is

zero.
The system is assumed to be dilute so that collisions and coalescence of droplets are neglected. Break-up of

droplets is also neglected. Since the focus of this study is on droplets that are smaller than the Kolmogorov
length scale, dissipation inside the droplet can be considered negligible as the flow in the interior of such drop-
lets is in the laminar regime. One could, on the other hand, consider a Hill’s vortex (Batchelor, 1971; Clift
et al., 1978) inside the droplets to get an estimate of the dissipation. If the velocity inside the droplet is assumed
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to be composed of only fluctuations, then one can estimate the dissipation ed,in inside the droplet using
ed,in = 2mfhsijsiji, where sij is the fluctuating strain rate tensor, using the prescribed stream-function for the
Hill’s vortex (Batchelor, 1971; Clift et al., 1978). It can be shown that the dissipation inside the droplet scales
like r2, where r is the radius of the droplet, implying that dissipation is small for small droplets. Thus, the term
hu00di

oðIdskiÞ=oxki in Eq. (A.7) is assumed to be negligible for non-evaporating droplets in the two-phase flow
regime considered here.

Experiments on single droplets in quiescent (Greene et al., 1993; Warnica et al., 1995a) and turbulent gas
fields (Warnica et al., 1995b) have reported that, for droplet Reynolds numbers in the range 10�3 to 100, and
in the absence of drop oscillation or deformation, the drag on droplets is not different from drag on solid
spheres in quiescent conditions. The droplet Reynolds numbers in the current study are Oð1Þ and well within
the range of Reynolds numbers explored in the experiments. Under such conditions, the term SMdj represent-
ing the instantaneous interphase momentum transfer, is equal and opposite in both the phases. Under condi-
tions of zero mean slip velocity in either phase, the fluctuating velocity at the droplet surface u00di

is the same as
the fluctuating gas-phase velocity u00f i

at the same location. These arguments allow us to assume that conser-
vative interphase TKE transfer, and hence the EoE hypothesis, is valid for the class of flows laden with
non-evaporating droplets analyzed in this study.
3.1.2. Evaporating droplets

To understand the contribution to the TKE in either phase due to interphase mass transfer in evaporating
droplet-laden flows, we again resort to the dispersed-phase TKE evolution equation derived using the EE
approach Eq. (A.7) in the Appendix A. The term ðSMdi � UiSqd

Þ in the second term on the right-hand side
of Eq. (A.7) essentially works out to a stress contribution, namely �sji

oId

oxj
, at the interface. One can decompose

the fluctuating velocity in the dispersed phase u00di
into a part that is equal to u00f i

and a stochastic part ni (which
we assume to be an isotropic Wiener process). Substituting this decomposition into the dispersed-phase TKE
evolution equation (cf. Eq. (A.7)), we get
hdqd

d

dt
~kd ¼ u00di

oðIdskiÞ
oxk

� �
� ðu00f i

þ niÞsji
oId

oxj

� �
þ ð1=2Þ u00di

u00di
Sqd

� 	
� ~kd Sqd

� 	
: ð19Þ
We assume that the correlation hnisji
oId

oxj
i in the second term on the right-hand side of Eq. (19) is zero for the

droplet-laden isotropic turbulence considered in this study. With this simplification, the interphase TKE trans-
fer term in the fluid-phase TKE evolution equation is equal and opposite in sign to that in the dispersed-phase
TKE evolution equation (cf. Eq. (A.7)), since
� u00f i
sji

oId

oxj

� �
¼ u00f i

sji
oI f

oxj

� �
:

Thus, the interphase TKE transfer is conservative for this two-phase system. Again, based on a similar argu-
ment as for non-evaporating droplets, the dissipation inside an evaporating droplet is assumed to be negligi-
ble. The other two terms remaining on the right-hand side of the above equation are the interphase mass
transfer terms. No special treatment is required for these terms because in DLM or other Lagrangian models
for droplets, a model for the droplet vaporization rate in turn implies a model for the interphase mass transfer
terms (see Appendix A for more details).
4. Model constants in DLM

4.1. Specification of Ck

The EoE model constant Ck defined in Eq. (17) represents the ratio of specific TKE in the dispersed phase
to that in the two-phase mixture. As noted in Section 3, Ck can depend on the mass loading /, Stokes number
Stg, droplet Reynolds number Red, initial kd/kf ratio and the dispersed-phase volume fraction hd. The droplet
Reynolds numbers considered in this study are of Oð1Þ, dispersed-phase volume fractions are of Oð10�3Þ and
the initial kd/kf ratio is of Oð1Þ. Hence, the dependence of Ck on these parameters is neglected in this study.
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However, if the above non-dimensional parameters vary by an order of magnitude across the test cases con-
sidered, we expect that the dependence of Ck on these parameters will need to be taken into account.

The dependence of Ck on mass loading and Stokes number4 is accounted for in this study. Since the ratio of
the equilibrium TKEs ke

d=ke
f (cf. Eq. (17)) is not known a priori, a model for Ck is required. The following

model for Ck is proposed:
4 He
Ck ¼
/ð1� 0:1StgÞ

1þ /ð1� 0:1StgÞ
: ð20Þ
Note that this specification obeys the correct limiting behavior of Ck as Stg! 0 (cf. Eq. (18)). Other functional
forms of Ck were also considered but the above specification gave the best agreement with the DNS dataset
used in this study. In order to improve the model for Ck, carefully controlled DNS of particle-laden turbulent
flows that report the fraction of the mixture energy in each phase are required. Also, the DNS should quantify
the effect of non-dimensional parameters in a two-phase flow system, as noted earlier, on the fraction of spe-
cific TKE in each phase. To the knowledge of the authors, no such DNS datasets are as yet available in the
literature.

4.2. Drift timescales in DLM

A novel feature of the proposed DLM is the presence of two different timescales in each SDE for the drift
and diffusion terms. The form of the drift timescales s1 and s3 in Eqs. (3) and (4), respectively, is now
developed.

4.2.1. Zero Stokes number limit
In the limit of zero Stokes number, the droplets respond immediately to the surrounding fluid. In this limit,

the fluid-phase velocity autocovariance and the dispersed-phase velocity autocovariance must match. There-
fore we require that, in the limit of vanishing Stokes number, the timescale s3 in Eq. (11) should tend to the
evolution timescale of the velocity autocovariance in Eq. (10).

A simple specification for s3 is
1

s3

¼ 2
1

2s1

þ 1

2
þ 3

4
C0

� �
1

s

� �
1

1þ StgC3

; ð21Þ
where C3 is a model constant (C3 = 0.1) and s = kf/ef is the fluid-phase eddy turnover timescale. The timescale
obeys the limiting behavior as Stg! 0 viz.
lim
Stg!0

1

2s1

þ 1

2
þ 3

4
C0

� �
1

s

� �
1

1þ StgC3


 �
¼ 1

2s1

þ 1

2
þ 3

4
C0

� �
1

s
:

Currently, particle velocity autocorrelation data for large Stokes number (say, Stg > 10) is not available from
DNS or experiments that can help determine the behavior of s3 in the large Stg limit. Although there is no
explicit dependence of the timescale s3 on mass loading /, we shall show next that the dependence on / does
appear through the timescale s1.

4.2.2. Zero mass loading limit

In the limit of zero mass loading, the effect of the dispersed-phase on the fluid-phase momentum is negli-
gible (one-way coupling). Regardless of the Stokes number, the fluid timescales remain unaffected by the pres-
ence of the dispersed phase and are identical to those seen in a single phase flow. In this limit, the timescale s1,
which essentially represents the modification to the fluid velocity autocorrelation timescale due to the presence
of dispersed phase, should tend to infinity. We require that the drift timescale in Eq. (3) should approach the
specification for the single-phase simplified Langevin model (Pope, 2000).

Truesdell and Elghobashi (1994) have reported velocity autocorrelation decay of the fluid particle at the
location of the solid particle in their DNS of two-way coupled particle-laden homogeneous turbulence. This
nceforth, ‘‘Stokes number’’ refers to Stg the Stokes number based on the Kolmogorov timescale, unless mentioned otherwise.
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quantity is different from the fluid-velocity autocorrelation given by Eq. (10), and is not sufficient to deter-
mine the dependence of s1 on / or Stg. Currently, we neglect the dependence of s1 on Stg and prescribe s1

to be
1

s1

¼ C1/
s
;

where C1 is a model constant (C1 = 0.5). This specification obeys the correct limiting behavior as /! 0 viz.
lim
/!0

1

2s1

þ 1

2
þ 3

4
C0

� �
1

s

� �
¼ 1

2
þ 3

4
C0

� �
1

s
:

4.3. Diffusion timescales in DLM

The timescales s2 and s4 govern the evolution of TKE in each phase (cf. Eqs. (5) and (6)). In accordance
with the EoE concept, and to introduce the capability to capture the multiscale nature of a turbulent two-
phase mixture into DLM, the timescales s2 and s4 are chosen to be equal to sp = hsinti/Cp, where hsinti is a
multiscale interaction timescale for interphase TKE transfer first proposed by Pai and Subramaniam
(2006). It was shown in Pai and Subramaniam (2006) that the new timescale accurately captures the depen-
dence of the interphase TKE transfer on Stg. This timescale has been successfully employed in the context
of EE two-phase turbulence modeling by Xu and Subramaniam (2006). The constant Cp is chosen to be
2.5 in this study. Details of the derivation relevant to the DLM timescale specification are reviewed here
for the sake of completeness.

We first define a Stokes number valid in the inertial range as
Stl ¼
sp

sl
; ð22Þ
where sl is computed as
sl ¼
juf j2

ef

: ð23Þ
Here, uf is the exact Eulerian fluctuating velocity in the fluid phase. In order to derive the multiscale interac-
tion timescale, the pdf of jufj is required. Using Eq. (3) the pdf of u, which is a model for uf, can be computed
directly from the solution. However, if the pdf of u remains joint normal during evolution, which is true for the
test cases considered in this study (see Appendix B for details on the pdf of uf implied by DLM), then one can
derive an analytical form for the multiscale interaction timescale. Let u obey a joint normal distribution with
zero mean and covariance r2

f dij, where r2
f ¼ ð2=3Þkf and dij is the Kronecker delta. With this assumption, one

can derive an expression for the pdf of Z = juj as
fZðzÞ ¼
ffiffiffi
2

p

r
1

r3
f

z2 expð�z2=2r2
f Þ; ð24Þ
where z is the sample space variable corresponding to Z. A mean timescale of interaction hsinti is derived from
the pdf of juj as
hsinti ¼
Z 1

juj�
sintf ðzÞdzþ

Z juj�

0

spf ðzÞdz: ð25Þ
The timescale sint is hypothesized to be of the form
sint ¼ Stlðsp � sÞ þ s ð26Þ
for juj* 6 juj 61. The significance of juj*, and the rationale behind the choice of a weighted-average timescale
hsinti in Eq. (25), is now discussed.

Eq. (23) is based on an inertial sub-range scaling where eddies have a characteristic length scale l. The
Stokes number Stl defined in Eq. (22) using the characteristic length scale determines how the droplets respond
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to these eddies. For a value of Stl > 1, it is hypothesized that the droplet responds slowly to the eddies and the
timescale of energy transfer is influenced more by the particle response time sp. On the other hand, if Stl < 1, it
is hypothesized that the droplet responds immediately to the flow, and the timescale of energy transfer is influ-
enced more by the eddy turnover timescale s. Thus, the pdf of juj (See Fig. 1) can be divided into two regions:
one that represents Stl > 1, and the other that represents Stl < 1, with juj* representing the transition between
the two regions at Stl = 1. Thus, juj* is uniquely determined by the relation (juj*)2 = spef.

It is interesting to note that Eq. (25) has the correct behavior for limiting values of Stl and juj*. In the limit
juj*! 0, there are no eddies in the system with Stl > 1. The droplets are simply convected by the flow and the
correct timescale for interphase TKE transfer in this limit is s. In the limit juj*!1, practically all the eddies
in the system satisfy Stl > 1, which implies that there are no eddies energetic enough to convect the droplets.
The correct timescale for interphase TKE transfer in this limit is the particle response timescale sp.

For a polydispersed droplet size distribution, each droplet has a different sp. Since the timescale sint in Eq.
(26) depends on, sp, each droplet can have a different interaction timescale sint. So, a multiscale interaction
timescale hsinti can be calculated for each droplet based on its particle response timescale. However, in the
calculations presented in this work we use the mean value of sp computed from the polydispersed droplet
ensemble, in place of sp, to compute sint in Eq. (26) to avoid prohibitively large computational run times.

Table 1 summarizes the model constants and timescales used in DLM.
z

f(
z)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3
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5

6

|u*|

St <1lSt >1l

Fig. 1. A schematic probability density function of juj that is used in the derivation of the multiscale interaction timescale hsinti. The
sample space variable corresponding to juj is z.

Table 1
Specification of model constants that appear in DLM for homogeneous particle-laden decaying and stationary turbulence

Model constant Stationary case Decaying case

Ck
/ð1�0:1StgÞ

1þ/ð1�0:1StgÞ Same

1/s1 C1//s Same
1/s2 = 1/s4 = 1/sp Cp/hsinti Same

1/s3 2 1
2s1
þ 3

4 C0


 �
1
s

h i
1

1þStgC3
2 1

2s1
þ 1

2þ 3
4 C0


 �
1
s

h i
1

1þStgC3

The constants C1 = 0.5, Cp = 2.5 and C3 = 0.1.
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5. Test cases for model validation

Direct numerical simulations of non-evaporating and evaporating droplets in stationary turbulence have
been performed by Mashayek et al. (1997). Simulation parameters used in the DNS are summarized in Table
2. We compare predictions from DLM against this DNS dataset since the DNS reports both TKE in each
phase, and statistics related to droplet dispersion. In addition, since a simplified evaporating droplet regime
is simulated, the behavior of DLM with temporally evolving droplet radii can be ascertained. The DNS
(Mashayek et al., 1997) has been performed under the following assumptions:

Non-evaporating droplets:

(1) Droplets are in the sub-Kolmogorov size range.
(2) The point-particle approximation is employed to represent the droplets in the system.
(3) The droplets do not affect the fluid-phase momentum equation which implies that the simulations are

one-way coupled.

Evaporating droplets:
In addition to the assumptions for non-evaporating droplets, the following assumptions hold for the evap-

orating droplets.
Spherically symmetric droplet vaporization is assumed, and constant-temperature droplets are assumed to

vaporize in an infinite, isothermal gas phase. It is also assumed that the vaporizing droplets do not signifi-
cantly alter the density of the surrounding gas, and all fluid-phase transport properties are assumed to be
constant.

The d2-law of vaporization is assumed wherein the rate of change of droplet surface area is a linear function
of time (Faeth, 1977)
Table
Param

Volum
Fluid-p
Disper
Accele
Initial
Turbu
Dissip
Kinem
Taylor
d2
pðtÞ ¼ d2

p0 � jt; ð27Þ
where dp(t) is the droplet diameter at time t, dp0 is the droplet diameter at some initial time t0 and j is the
evaporation rate given by relation (Faeth, 1977)
k ¼ 8Cf lnð1þ BMÞCRe: ð28Þ
Here Cf is the fuel-vapor diffusivity coefficient (Lewis number of unity is assumed) and BM is the Spalding
transfer number. The correlation factor CRe of the form
CRe ¼ 1þ 0:3Re0:5
d Sc0:33

d ð29Þ
proposed by Ranz and Marshall (1952) accounts for convective effects.
The droplet Reynolds number Red is defined as
Red ¼
jUfðXd; tÞ � Vdjdp

mf

; ð30Þ
2
eters used in the DNS (Mashayek et al., 1997)

e fraction h 5.5 · 10�5

hase thermodynamic density qf (kgm�3) 1.00
sed-phase thermodynamic density qd (kgm�3) 1000.00
ration due to gravity g(ms�2) 0.0
mean slip hUfi � hVdi(ms�1) 0.0,0.0,0.0
lence intensity in fluid phase u0(ms�1) 0.019
ation rate in fluid phase �(m2s�3) 3.98 · 10�6

atic viscosity of fluid m(m2s�1) 2.692 · 10�4

scale Reynolds number Rek 41
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where Uf is the gas-phase velocity at the location Xd,Vd is the droplet velocity and Scd = mf/Cf is the droplet
Schmidt number (Faeth, 1977). The evaporation constant j varies in time only due to change in CRe, which in
turn depends on the temporal variation in Red.

Incorporating the d2-law into the expression for the particle time constant defined as
spðtÞ ¼
qd

qf

d2
p

18mf

ð31Þ
results in
spðtÞ ¼ sp0 � set; ð32Þ
where the initial particle time constant
sp0 ¼
qd

qf

d2
p0

18mf

: ð33Þ
The non-dimensional quantity se can be related to the momentum response time by
se ¼
qdj

qf18mf

¼ spðtÞj
dpðtÞ2

¼ spðtÞ
sevap

: ð34Þ
Thus, se is the ratio of the mechanical response time of the particle to the remaining droplet lifetime
sevap = dp(t)2/j, if the droplet evaporated at a constant vaporization rate from time t. A value of se < 1 implies
that the time taken by the droplet to equilibrate with the flow is larger than the droplet lifetime. The ratio se

can be expressed in terms of CRe as
se ¼ CRese0; ð35Þ
where
se0 ¼
qd

qf

4Cf

9mf

lnð1þ BMÞ ¼
qd

qf

j
18mf CRe

: ð36Þ
Mashayek et al. (1997) report initial vaporization rates in terms of a parameter sec that they relate to se0 by the
relation
se0 ¼ 0:29sec=s: ð37Þ
More details on the parameter sec and the reason for the coefficient 0.29 can be found in Mashayek et al.
(1997). The initial evaporation rate is reported by specifying sec in multiples of the Kolmogorov timescale
sk. For a given value of sec, se0 and j are found using Eqs. (37) and (36), successively.

The non-evaporating test case is denoted TNE. Of the several test cases reported in the DNS with evapo-
rating droplets, only three representative test cases are chosen in this work for the sake of brevity:

(1) Varying initial vaporization rates, constant initial particle response time, constant CRe (TE1).
(2) Varying initial vaporization rates, varying initial particle response time, varying CRe by changing Red,

keeping Scd = 1 (TE2).
(3) Varying initial vaporization rates, varying initial particle response time, varying CRe by changing both

Red and Scd (TE3).

The other two cases analyzed in the DNS are (a) the effect of spray size and (b) the effect of initial drop size
distribution. Since we restrict our study to a homogeneous evaporating spray, we do not analyze the effect of
initial spray size. Additional terms including the change in mean velocity along, and transverse to, the axis of
the spray need to be taken into account to study an inhomogeneous spray completely. Since such information
is not reported in the DNS (Mashayek et al., 1997), we do not analyze this test case. Although the DLM is
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capable of considering effects of initial spray size, for the sake of brevity, we do not analyze the test case
involving varying drop size distributions. Also, drift effects due to gravity are not investigated in this study.

5.1. DLM in the limit of one-way coupling

If the mass loading /! 0 in a two-phase flow system, then it is reasonable to assume one-way coupling. At
the edges of an evolving spray, where the volume fraction of the liquid hd� 1, the limit of one-way coupling
could be achieved and it is important for a two-phase flow turbulence model to behave reasonably well in the
one-way coupled limit. In this limit, the TKE in the fluid phase can be assumed to remain unaffected by the
presence of the dispersed phase. Thus, terms representing interphase interaction in the evolution equation for
the fluid-phase TKE Eq. (13) can be neglected.

An interesting feature of DLM is that, by virtue of the EoE hypothesis, it has the correct one-way coupled
limiting behavior as the mass loading /! 0. The interphase TKE transfer term in Eq. (8) turns out to be neg-
ligible in this limit. In other words, no additional treatment is necessary to introduce the physics governing the
two-phase flow mixture in the one-way coupled limit into DLM. This observation can be explained as follows.

The specific equilibrium TKE in the fluid phase ee
f defined in Eq. (16) can be rewritten as
ke
f ¼ ð1� CkÞ

qmkm

qfhf

¼ ð1� CkÞðkf þ /kdÞ:
From Eq. (17), one can infer that for /! 0 (limit of one-way coupling), Ck ¼ /ke
d=ke

f (since ke
d=ke

f is finite).
This results in
lim
/!0

ke
f ¼ kf ;
which essentially implies that dkf/dt � 0 in Eq. (8).

6. Model predictions

In this section, details of the numerical implementation and integration of the SDEs given by Eqs. (3) and
(4) are first presented. Next, predictions from DLM are compared with DNS results for the test cases TNE,

TE1, TE2 and TE3. It is noted at the outset that we do not seek an exact match between predicted results and
the DNS dataset used in model validation, rather we assess the capability of the new model in capturing trends
of important two-phase flow statistics with varying Stokes number. A more detailed discussion is presented in
Section 7.

6.1. Initialization of the computational ensemble

The fluid-phase turbulence simulated in the DNS (Mashayek et al., 1997) is isotropic at initial time, and
owing to one-way coupling, remains isotropic in time. Corresponding to this initial condition, in DLM the
initial velocity of a stochastic particle that represents the fluid phase is sampled from a joint normal distribu-
tion with zero mean and covariance matrix (2/3)kfdij. In the DNS, the droplets are introduced into the fluid
phase with the same velocity as the surrounding fluid. This fact affects the evolution of statistics like droplet
Reynolds number that depend on velocities in both phases at the same position and time. However, since in
DLM the particle Reynolds number calculation procedure (see next) randomly reorders the stochastic parti-
cles at every time step, it does not matter if particles with like indices across the phases have identical velocities
at initial time or not. Nevertheless, we do ensure that kf(t = 0) = kd(t = 0).

6.2. Computational details for the system of SDEs

An Euler–Maruyama (EM) scheme (Kloeden and Platen, 1992), which is the stochastic equivalent of the
deterministic Euler scheme, is used to evolve the system of vector SDEs (cf. Eqs. (3) and (4)) in time. Since
we are interested in mean quantities in this study, and because the weak order of convergence of the EM
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scheme is unity (Kloeden and Platen, 1992), we choose this scheme to integrate the SDEs in time. Twenty mul-
tiple independent simulations (MIS) are performed for each case, and statistics are obtained by averaging over
these MIS to reduce statistical error. The number of stochastic particles that represent each phase is the same,
and equal to 10000. The statistical variability in the moments of the velocity, like TKE in the fluid phase kf and
dispersed phase kd, and velocity autocorrelations in the both phases (cf. Eqs. (10) and (11)), across the 20 MIS
is less than 3%. The time step required for accurate numerics is determined by performing a series of simula-
tions with successively decreasing time steps. It is observed that for Dt 6 0.002 min (sp,s), the predicted
moments did not change in a statistical sense. Therefore, this value of Dt is chosen for all the simulations.
The runs for the evaporating cases are stopped when the minimum of the particle response times of all droplets
is (1/20)th of the initial particle response time, in order to avoid prohibitively large computational times.

We estimate the droplet Reynolds number from the ensemble of stochastic particles in the following man-
ner. The computational particles that represent the fluid phase are randomly paired with those that represent
the dispersed phase at the beginning of each time step (note that the number of stochastic particles that rep-
resent each phase is the same). The Reynolds number estimate for the mth stochastic particle that represents
the dispersed phase is computed as
5 In
Euleria

6 An
C6 = 0
an exa
Red;ðmÞ ¼
juðmÞ � vðmÞjdp;ðmÞ

mf

; ð38Þ
where dp,(m) is the diameter property associated with the mth stochastic particle. The mean droplet Reynolds
number is calculated by averaging Eq. (38) over the stochastic particles that represent the dispersed phase as5
hRedi ¼
1

N p

XNp

m¼1

Red;ðmÞ; ð39Þ
where Np = 10000. We adopt this procedure to calculate hRedi since each stochastic particle represents only a
realization of a stochastic process (cf. Eqs. (3) and (4)). Moreover, in the homogeneous ensemble of particles
considered, each particle that represents the dispersed phase is equally likely to be next to a particle that rep-
resents the fluid phase.

6.3. Test case TNE

Mashayek et al. (1997) perform a test for stationarity in the non-evaporating case by reporting the evolu-
tion of the mean droplet Reynolds number hRedi (see Eq. (30) for the definition of Red). In the DNS, the
angled brackets represent an averaging done over all droplets.

Predicted evolution of droplet Reynolds number for increasing Stokes number using DLM is shown in
Fig. 2 against scaled time t/Tref. Here Tref = l/u 0, where l is the Eulerian integral length scale and u 0 is the initial
turbulence intensity in the fluid phase, both reported in the DNS (Mashayek et al., 1997).6 From the figure it
can be observed that the system reaches stationarity after t/Tref = 3.0. As a result of the random pairing of
particles to determine hRedi, the initial evolution of hRedi does not start from zero as in the DNS. Although
the trend with increasing Stokes number is predicted accurately, DLM overestimates the stationary value of
hRedi. To check whether this overestimation is a problem of numerical resolution, an analytical expression for
hRedi as implied by DLM is derived in Appendix B where it is shown that the predictions from DLM are con-
sistent with the analytical results (the analytical stationary value of hRedi is shown in Fig. 2 for each Stokes
number).

Scaled equilibrium dispersed-phase TKE predicted by DLM is compared in Fig. 3 with results from DNS
for increasing Stokes number. Since the turbulence in the fluid phase is forced to remain constant, the
stationary TKE of the fluid phase is identical to the initial TKE kf(t0). With decreasing Stokes number, the
inhomogeneous computations, the same procedure can be applied to the computational particles in each phase that occupy the same
n grid cell.
alternative scaling of the time coordinate is the Eulerian integral timescale sE estimated by (C5/C6)(u

02/e), where C5 = 0.212 and
.36 (See Lu (1995), Hinze (1975)). It turns out that sE � Tref. However, the emphasis in this study is to match trends rather than seek
ct quantitative match with DNS results. Therefore, Tref is retained as an appropriate scaling of the time co-ordinate.
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equilibrium TKE in the dispersed phase should approach the equilibrium TKE in the fluid phase, a trend that
is observed in the DNS. From the figure one can conclude that predictions of dispersed-phase equilibrium
energies from DLM agree well with the DNS results.
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Predicted droplet-velocity autocorrelations from DLM using Eq. (9) are presented in Fig. 4 against scaled
time t/Tref. With increasing Stokes number, a droplet takes more time to lose correlation with its initial veloc-
ity resulting in larger timescales of droplet-velocity autocorrelation decay. Predicted trend in the autocorrela-
tion decay with increasing Stokes number by DLM matches well with corresponding results from DNS.

Predictions from DLM for the asymptotic dispersed-phase diffusion coefficients ad(1) computed using Eq.
(12), scaled by the product of the initial turbulence intensity u 0 and the Eulerian integral length scale l, are
reported in Fig. 5. Although DLM overestimates the asymptotic diffusion coefficient of the dispersed phase,
the trend with increasing Stokes number matches DNS results. Also, shown on the same figure is the fluid-
phase asymptotic diffusion coefficient af(1) computed using DLM. As predicted by theoretical calculations
(See G. Gouesbet and Picart (1984) for a discussion on Tchen’s analysis (Tchen, 1947)), the dispersed-phase
asymptotic diffusion coefficient matches with that of the fluid-phase as Stg! 0. Again, to see if the overesti-
mation of ad(1) is a problem of numerical resolution, an analytical estimate of the asymptotic diffusion coef-
ficient as implied by DLM is given in Appendix C. It is seen that DLM predictions are consistent with the
analytical estimates.

6.4. Test case TE1

In this test case, the radii of initially monodispersed droplets evolve according to the d2-law given by Eq.
(27). All droplets evolve by a constant vaporization rate such that each droplet’s radius reduces by the same
amount in time. This is accomplished by assuming that CRe remains at unity (or Scd = 0, which implies infi-
nitely fast diffusion of the fuel vapor in the gas). The initial particle response time is the same across all the
runs. As the droplet radii decrease in time their Stokes numbers Stg decrease and the droplets respond faster
to the flow disturbances, thereby losing correlation with their initial velocity faster. Thus, when vaporization is
included, droplet-velocity autocorrelations decay faster compared to the case with no evaporation (sec = 0).
The faster decay in autocorrelations is accentuated at higher initial vaporization rates.

Predicted evolution of droplet-velocity autocorrelations for different initial vaporization rates and for an
initial particle time constant sp0 = 5sg (i.e. Stg = 5) using DLM is shown in Fig. 6. DLM shows a reasonable
match with the autocorrelations from DNS and also matches the trend with increasing vaporization rate.
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6.5. Test case TE2

Droplet vaporization rates, which were constant in time for each droplet in test case TE1, are allowed to
change in this test case by allowing for a non-zero Scd (in this case Scd = 1). The dependence of vaporization
rate on Red through the assumed correlation Eq. (29) results in a radius evolution that is different for each
droplet. Consequently, an initially monodispersed ensemble of droplets becomes polydispersed in time. Evo-
lution of particle response time normalized by its initial value averaged over all the particles is shown in Fig. 7.
A linear decay in the scaled particle response time is observed in DLM which is consistent with the DNS
results.

The d2-law predicts that, for constant vaporization rate j, droplets with smaller radii evaporate faster than
ones with larger radii. Since j depends on Red through the correlation for CRe in Eq. (29), each droplet has
different initial vaporization rates at initial time due to different droplet Reynolds numbers arising from the
initial distribution of droplet velocities (cf. Eq. (30)). As dp decreases, Red decreases which slows down the
vaporization rate. Once a droplet starts to evaporate, a competition between the d2-law and the vaporization
rate is observed. The DNS predicts that the standardized pdf of dp becomes more Gaussian as sp increases. A
negative value of skewness in the standardized pdf of dp is expected, since owing to the d2-law, the probability
of finding large particles in the computational domain is higher than finding smaller ones at long time.7 From
Fig. 8 one can infer that in the DNS the skewness of the standardized pdf of dp remains largely on the negative
side, becoming more negative towards the end. Also, the DNS shows that the kurtosis is closer to Gaussian,
especially in between t/Tref = 1 and t/Tref = 2.

Skewness and kurtosis predictions from DLM are shown in Fig. 8. DLM predicts a larger particle Reynolds
number compared to the DNS (see Fig. 2 for the stationary case), thereby overestimating the vaporization
7 The skewness and kurtosis of the standardized pdf of the particle diameter dp characterizes the polydispersity of the spray droplets.
Skewness measures the degree of asymmetry of a distribution (Abramowitz and Stegun, 1964). Skewness for a Gaussian random variable
is 0. The kurtosis characterizes the peakedness of the distribution. Kurtosis for a Gaussian random variable is 3.
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rate. This results in a larger negative skewness compared to the DNS results. The effect of an overestimated
vaporization rate is also seen in the kurtosis predicted by DLM showing a value much larger than 3. This
implies that the pdf of dp predicted by DLM is more peaked than that seen in the DNS. However, the approx-
imate flattening of the kurtosis in between t/Tref = 0.5 and t/Tref = 1.5 illustrates that DLM does capture the
competing effects of vaporization rate and the d2-law as the droplets evolve. DLM predicts a trend of an
increasing kurtosis and decreasing skewness towards the end of the simulation, similar to that seen in
DNS, although the trends are more pronounced in the DLM predictions. Droplets with smaller initial vapor-
ization rate and Stokes number tend to remain longer in the DNS, a trend that is captured by DLM. A com-
parison of the pdf of sð1=2Þ

p (or dp) for initial Stg = 5 and sec = 5sg with that from the DNS results is shown in

Fig. 9 for different scaled times.8 As suggested by the higher (positive) kurtosis and a negative skewness of s1=2
p

from DLM (cf. Fig. 8) compared to the DNS, the pdf of s1=2
p is more peaked with longer left tails than the

corresponding DNS results.

6.6. Test case TE3

The effect of changing Scd for different initial vaporization rates and particle response times is now consid-
ered. Mashayek et al. (1997) present two sets of results in this test case depending on how the simulation is
initialized: in the first case, the relative velocity between the droplets and the surrounding fluid is zero
(non-stationary initial state) and in the second case, the initial state of the droplet-laden turbulent flow is sta-
tionary. The value of hCRe � 1i is tracked in these cases which for a constant Scd measures how hRe1=2

d i (cf. Eq.
(29)) evolves in time.

For the non-stationary initial state, the droplet Reynolds number at initial time is zero in the DNS. Once
the droplets start to evolve the Reynolds number increases due to a finite relative velocity. At the same time,
the droplet diameter is decreasing due to vaporization. A maximum value in the evolution of Reynolds num-
ber is reached, analogous to that seen in case TNE (see Fig. 2). In time, the effect of the decreasing diameter
8 The exact scaling of the ordinate for the pdf plot reported in the DNS is not clear, since the pdf from the DNS does not appear to
integrate to unity. So we make a qualitative comparison of the pdf of sð1=2Þ

p from DLM with that from the DNS on the same plot with
different ordinates.
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offsets the increase in the relative velocity and the particle Reynolds number starts to decrease. As is evident
from the DNS results presented in Figs. 10 and 11 for initial Stokes numbers Stg = 0.5 and 5, respectively,
increasing Scd increases the rate of evolution of hCRe � 1i although the maximum is reached at almost the
same scaled time.

Fig. 10 shows the predicted trend in the evolution of hCRe � 1i by DLM for Stg = 0.5. As observed in the
non-evaporating case, the droplet Reynolds number is overestimated by DLM in this case. This results in an
overestimate of hCRe � 1i. Again as a result of the random pairing of particles to determine hRedi in DLM,
hCRe � 1i does not start from zero as in the DNS. However, the trend with increasing Scd is identical to that
seen in the DNS. The same behavior is seen in the predicted trends of hCRe � 1i for initial Stg = 5 in Fig. 11.

For the stationary initial condition and a value of Scd = 1, the droplets have a attained stationary mean
Reynolds number and the flow has reached a stationary state prior to the start of vaporization. Once vapor-
ization is initiated, the particle Reynolds number begins to decrease due to a decrease in the diameter. Fig. 12
shows that the predicted trend for the two initial particle response times from DLM matches with DNS
results.
6.7. Interphase mass transfer terms in the dispersed-phase TKE evolution equation

With no interphase mass transfer, as in the test case TNE, the only term that governs the evolution of the
dispersed-phase TKE is the interphase TKE transfer term (cf. Eq. (A.5) in the Appendix). However, in
the presence of interphase mass transfer, as in the test cases TE1-TE3, additional terms appear in the evolution
equation for the dispersed-phase TKE. These additional terms, namely, 3nhR3i and 6nhR3i~kdheCjti in
Eq. (A.5) in the Appendix, represent the contribution to the dispersed-phase TKE due to interphase mass
transfer. It has to be borne in mind that two-phase models may give correct predictions for the dispersed-
phase TKE in flows with mass transfer even if the individual contributions in the TKE evolution equation
(cf. Eq. (A.5)) are not accurately modeled. DNS of evaporating two-phase flows possess the capability to
quantify these terms. However, to our knowledge the DNS datasets available in the literature do not report



t/Tref

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scd=5 (DLM)
Scd=1 (DLM)
Scd=0.1 (DLM)
Scd=5 (DNS)
Scd=1 (DNS)
Scd=0.1 (DNS)

〈C
R

e-
1〉

Fig. 11. Predicted trend of hCRe � 1i for varying Scd and sp0 = 5sk, sec = 5sk evolving from a non-stationary initial state, for TE3 (i) DLM
(ii) DNS (Mashayek et al., 1997). Arrow shows direction of increasing Scd.

t/Tref

〈C
R

e-
1〉

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6
Scd=5 (DLM)
Scd=3 (DLM)
Scd=0.1 (DLM)
Scd=5 (DNS)
Scd=1 (DNS)
Scd=0.1 (DNS)

Fig. 10. Predicted trend of hCRe � 1i for varying Scd and sp0 = 0.5sk,sec = 0.5sk evolving from a non-stationary initial state, for TE3 (i)
DLM; (ii) DNS (Mashayek et al., 1997). Arrow shows direction of increasing Scd.

M.G. Pai, S. Subramaniam / International Journal of Multiphase Flow 33 (2007) 252–281 273
budgets of the interphase mass transfer terms. Therefore, we do not quantify these terms from DLM since we
do not have any datasets to compare with. If available, model predictions of these individual terms can be
compared with DNS data, thereby resulting in a more rigorous validation of any two-phase flow turbulence
model.
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7. Discussion

In all the test cases presented above, it is clear that DLM captures the correct trend in the evolution of cer-
tain key statistics related to both non-evaporating and evaporating droplet-laden two-phase turbulent flow. It
is fair to conclude that even though DLM has been derived taking two-way coupling into consideration, it has
performed reasonably well in predicting droplet dispersion characteristics and TKE in the limit of one-way
coupled droplet-laden turbulence.

The one-way coupled case considered is a simplified test case, applicable only in certain dilute spray
regimes. Nevertheless, the one-way coupled limiting behavior of a two-phase flow turbulence model can be
analyzed and also the behavior of certain important model constants can be ascertained through this
comparison.

The reasons for the emphasis in this study on predicting only the trends correctly rather than seeking an
exact quantitative match are manifold. In DNS of particle-laden flow (Sundaram and Collins, 1999; Mashayek
et al., 1997; Squires and Eaton, 1991), although the gas phase is treated accurately by solving the full Navier–
Stokes equations, the no-slip condition on the surface of each particle is not enforced. Also, since the flow
around each particle is not resolved, a drag model of the form derived by Maxey and Riley (1983) is used
to evolve particle velocities in time. The influence of the particle on the fluid-phase momentum equation is
included by means of a modeled source term. It is important to recognize that the point–particle assumption
for the particle drag in such DNS is justified in a limited flow regime where particle Reynolds numbers Red are
Oð1Þ, dispersed phase to fluid density ratios qd/qf are Oð1000Þ, and particles are sub-Kolmogorov size with
negligible wake effects. The homogeneous problem that forms the basis of the investigation in this work
and for which DNS datasets exist corresponds to a flow regime where the assumptions mentioned earlier
are valid.

However, volume-displacement effects are neglected in such DNS and the carrier-phase velocity field is
assumed to be solenoidal. Also, particle–particle (or drop–drop) interaction effects are not accounted for in
such DNS, and the effect of the point–particle approximation on the true pressure field is also not quantified.
The only way to test whether these approximations are justified is to perform true DNS where the flow around
each droplet is fully resolved and exact boundary conditions are imposed on each droplet surface. The
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assumption of solenoidality of the gas-phase velocity (which in turn affects the fluid pressure field), and neglect
of droplet–droplet interaction effects, can only be tested in a true DNS. Recent studies by Ten Cate et al.
(2004) are emerging which seek to assess the consequences of the point–particle approximation. They perform
fully resolved simulations of particle-laden stationary turbulence in the same particle Stokes number and par-
ticle mass loading range as in the DNS study by Boivin et al. (1998) which uses a point–particle approximation
for the dispersed phase. Ten Cate et al. (2004) find that the decrease in the rate of energy dissipation at the
large scales is of the same order as that found by Boivin et al. (1998). However, one should note that the par-
ticle diameter is smaller than the Kolmogorov length scale, particle to fluid density ratios are Oð1000Þ and the
particle Reynolds numbers are Oð1Þ in the DNS performed by Boivin et al. (1998). On the other hand, the
particle diameters are larger than the Kolmogorov length scale, particle to fluid density ratios are Oð1Þ and
particle Reynolds numbers are Oð10Þ in the fully resolved DNS performed by Ten Cate et al. (2004) and their
simulations do not fall in the regime of two-phase flows investigated in this study.

Therefore, the DNS datasets performed with the point–particle approximation that are used in this study
are the best data available for model testing and validation. It appears very likely that the existing DNS data-
sets do capture the major trends of the TKE variation and autocorrelation evolution with important non-
dimensional parameters like Stokes number and mass loading. It is possible that true DNS such as the one
performed by Ten Cate et al. (2004) might lead to revision in the exact quantitative predictions. Owing to
all the reasons cited above, our principal conclusions concern qualitative trends predicted by DLM, rather
than an exact quantitative match with available DNS data.
8. Conclusions

Direct numerical simulations of particle-laden flow confirm the existence of two disparate timescales, one
governing particle dispersion and the other governing the interphase TKE transfer, that behave differently
with Stokes number. In this context, the principal conclusions and achievements of this study are:

(1) Two-phase flow turbulence models should possess the capability to capture these disparate timescales
observed in simple two-phase flow DNS. They should also possess the capability to capture the trends
of these timescales with varying Stokes number in these simple flow configurations in order to be pre-
dictive in more complex spray computations.

(2) A new dual-timescale Langevin Model, based on the Equilibration of Energy concept is proposed. A
novel feature of the proposed model is the incorporation of dual timescales, which can be specified to
match the disparate trends in the evolution of TKE and velocity autocorrelation with varying Stokes
number and mass loading.

(3) DLM predicts correct trends in stationary dispersed-phase TKE, dispersed-phase velocity autocorrela-
tion decay and asymptotic droplet diffusion coefficients in droplet-laden stationary turbulence for a
range of Stokes numbers.

(4) In the evaporating-droplet test case, DLM predicts pdf and moments of the droplet diameter that are in
reasonable agreement with DNS results. Thus, DLM performs well in the simplified evaporating droplet
regime accessed by the DNS.

Important terms in the evolution equation of the dispersed-phase TKE are identified in both the LE and EE
statistical representations of two-phase flow. This exercise can serve as a guiding framework for generating
datasets from future DNS of evaporating droplet-laden flow that are helpful to the two-phase flow modeling
community.
Acknowledgement

This work is partially supported by a US Department of Energy, Early Career Principal Investigator Pro-
gram Grant No. DE-FG02-03ER25550.



276 M.G. Pai, S. Subramaniam / International Journal of Multiphase Flow 33 (2007) 252–281
Appendix A. Exact equations for the dispersed-phase velocity covariance in a two-phase flow

The evolution equation for the dispersed-phase velocity covariance derived using the Lagrangian–Eulerian
(LE) representation is presented here. The primary objective of this section is to identify unclosed terms in the
equation that need to be modeled. The connection between DLM and the LE approach will also be explained
here.

The governing equations for the dispersed phase in the LE representation are derived using the spray equa-
tion, which is the evolution equation for the droplet distribution function (ddf). First proposed by Williams
(1958), the droplet distribution function f(x,v,r,t) gives the probable number of droplets with positions in the
range x + dx, velocities in the range v + dv and radii in the range r + dr. The phase space may also include
other quantities like droplet temperature, droplet distortion from sphericity and rate of change of distortion
from sphericity (See Amsden et al. (1989), for example). The theoretical foundations of the LE approach have
been established by Subramaniam (2001, 2000), who has shown that the ddf can be decomposed into a con-
ditional joint pdf of velocity and radius f c

VRðv; rjx; tÞ, and drop number density n(x;t) as
9 Vo

where

and fo
f ðx; v; r; tÞ ¼ f c
VRðv; rjx; tÞnðx; tÞ:
Subramaniam (2001) has also shown that the ddf can be related to the single surrogate-droplet density
f ðmÞ1s ðx; v; r; tÞ as
f ðx; v; r; tÞ ¼
X
mP1

pmmf ðmÞ1s ðx; v; r; tÞ; ðA:1Þ
where pm is the probability that the number of droplets in the system at any time t is equal to m.
The single surrogate droplet-density is the density of identically distributed surrogate droplets in phase

space. This density has important implications in particle method solutions, like the one used in this study,
of the spray equation where each computational particle is assumed to be an identically distributed realization
of the spray. The Lagrangian joint probability density function of velocity and radius implied by a stochastic
model like DLM can be identified with f ðmÞ1s , and hence every model for the particle velocity in turn implies a
modeled spray equation.

In order to derive an equation for the dispersed-phase velocity covariance, we define a volume-weighted or
r3-weighted9 ddf of fluctuating velocity ~gðx;w; r; tÞ as (Subramaniam, 2003; Pai and Subramaniam, 2006).
~gðx;w; r; tÞ ¼ hR3ðx; tÞinðx; tÞ~f c
VR h~Vjx; ti þ w; rjx; t

 �

; ðA:2Þ
where ~f c
VR ¼ ðr3=hR3iÞf c

VR. The fluctuating velocity in the dispersed-phase w is defined as
w ¼ v� h~Vjx; ti;
where h~Vjx; ti is the r3–weighted mean of the dispersed-phase velocity and v is the sample space variable for the
instantaneous velocity.

Under conditions of statistical homogeneity, the dependence of ~g on x can be neglected and the evolution
equation for ~g simplifies to (Subramaniam, 2003; Pai and Subramaniam, 2006)
o~g
ot
¼ � o

owk

ðhAkjv; r; ti~gÞ � o

or
ðhHjv; r; ti~gÞ þ 3hCjv; r; ti~g; ðA:3Þ
lume-weighted averages of any smooth function Q(v,r) are defined as

h~Qi � hR
3Qi
hR3i

¼
R
½v;rþ� r

3Qf c
VRðv; rjx; tÞdv drR

½v;rþ� r
3f c

VRðv; rjx; tÞdvdr
;

r+ denotes the region 0 6 r <1, while the number-weighted average of any smooth function Q(v,r) is defined as

hQi ¼
Z
½v;rþ�

Qf c
VRðv; rjx; tÞdvdr;

r the special case of monodisperse particles heQi ¼ hQi.
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where hAkjv,r;ti represents the expected acceleration (rate of change of velocity) conditional on location [v,r] in
phase space, hHjv,r;ti represents the expected rate of change of radius conditional on [v,r] and
hCjv; ti ¼ H
R

����v; t
� �

;

which is the vaporization rate scaled by radius. A more detailed discussion on these terms and their derivation
can be found in Subramaniam (2001, 2000).

From Eq. (A.3), the evolution equation for the covariance of the dispersed phase velocity (assuming homo-
geneity) can be derived as (Subramaniam, 2003; Pai and Subramaniam, 2006)
ðA:4Þ
where
The first term on the right-hand side of Eq. (A.4) is the acceleration-fluctuating velocity correlation
while the remaining two terms can be grouped together to represent the net velocity covariance change due to
interphase mass transfer
Models for particle velocity and droplet vaporization in turn imply models for hAii and hHi. In particle-based
LE approaches like DLM (also Amsden et al. (1989)), the terms on the right-hand side of Eq. (A.4) are closed
and can be determined from the solution.

Contracting indices in Eq. (A.4) results in an evolution equation for the r3-weighted TKE in the dispersed
phase ~kd ¼ ð1=2Þ as
ðA:5Þ
With no interphase mass transfer, as in non-evaporating or solid particle-laden turbulent flow, and monodi-
spersed particles, the terms involving C are zero. Also, volume-weighted quantities are the same as their num-
ber-weighted counterparts. The above equation then simplifies to
o

ot
kd ¼ hAiv00i i:
Thus, in a homogeneous two-phase flow with no interphase mass transfer the evolution of the dispersed-phase
TKE is governed only by the acceleration-fluctuating velocity covariance.

A.1. Correspondence with the Eulerian–Eulerian statistical representation of two-phase flows

For a homogeneous two-phase flow, there is a correspondence between the governing equations for the dis-
persed-phase TKE derived using the LE and Eulerian–Eulerian (EE) representation of two-phase flow. This
correspondence allows one to estimate an unclosed term on the EE side using the corresponding term on the
LE side.

Under assumptions of statistical homogeneity, one can derive the evolution equation for the density-
weighted dispersed-phase TKE, defined as
~kd ¼ hIdqu00di
u00di
i=hIdqi; ðA:6Þ
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in the EE representation as (Drew, 1983; Subramaniam, 2003; Xu, 2004) as
hdqd

d

dt
~kd ¼ u00di

oðIdskiÞ
oxk

� �
þ u00di

ðSMdi � UiSqd
Þ

� 	
þ ð1=2Þ u00di

u00di
Sqd

� 	
� ~kd Sqd

� 	
; ðA:7Þ
where Ui is the instantaneous velocity in the two-phase system. The dispersed-phase fluctuating velocity u00di
is

defined with respect to the density-weighted mean as
u00di
¼ U i � h ~U dii: ðA:8Þ
Here, the density-weighted mean velocity in the dispersed phase is given as
h eU dii ¼
hIdqU ii
hIdqi

;

where q is the density of the two-phase flow field. The corresponding equations for the fluid phase are obtained
by replacing d by f. In the above equations, Id is the indicator function which is unity in the dispersed phase
and zero in the fluid phase. The interphase momentum transfer SMdi is (Subramaniam, 2003; Xu, 2004)
SMdi ¼ qU i U j � U ðIÞj

� � oId

oxj
� sji

oId

oxj
; ðA:9Þ
where U ðIÞj is the interface velocity (for example, the regression velocity of the droplet surface) and sji is the
stress tensor in the dispersed phase. The presence of oId/oxj in the terms on the right-hand side imply that such
terms are defined only at the interface. The interphase mass transfer term Sqd

can be written as (Subramaniam,
2003; Xu, 2004)
Sqd
¼ qðU i � U ðIÞi Þ

oId

oxi
: ðA:10Þ
With no interphase mass transfer, Eq. (A.7) simplifies to
hdqd

d

dt
~kd ¼ u00di

oðIdskiÞ
oxk

� �
þ hu00di

SMdii: ðA:11Þ
The correspondence between the dispersed-phase TKE evolution equation in the LE and EE representations is
given below by comparing the right-hand sides of Eqs. (A.5) and (A.7)
where M denotes the correspondence between the terms. For the case with zero interphase mass transfer, the
correspondence simplifies to
Using DLM, the terms on the right-hand side involving C are in closed form since such terms can be easily
computed from the solution. The above development enables one to estimate from the LE representation
the corresponding unclosed term in the EE representation.

Appendix B. Mean droplet reynolds number estimate from DLM

Using standard methods to solve a time-dependent Ornstein–Uhlenbeck process (Gardiner, 1983) one can
show that for a stochastic differential equation of the form
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dUðtÞ ¼ �AðtÞUðtÞdt þ BðtÞdW ðtÞ; ðB:1Þ

where A(t) and B(t) are the drift and diffusion terms, respectively, and dW(t) is a Wiener process, the pdf of
U(t) is Gaussian with the mean and variance evolving according to
hUðtÞi ¼ l exp �
Z t

0

Aðt0Þdt0
� �

ðB:2Þ

Var½UðtÞ� ¼ r2 exp �2

Z t

0

Aðt0Þdt0
� �

þ
Z t

0

exp �2

Z t

t0
AðsÞds

� �
B2ðt0Þdt0; ðB:3Þ
for an initial Gaussian velocity field U(t) with mean l and variance r2. Note that Eqs. (3) and (4) are of the
same form as Eq. (B.1).

One can then derive the probability density function of the absolute value of the relative velocity
W = ju � vj as
fW ðwÞ ¼
ffiffiffi
2

p

r
2

3
S

� ��3=2

w2 exp �w2 4

3
S

� ��� �
;

where
S ¼ kfðtÞ þ kdðtÞ � 2qðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kfðtÞkdðtÞ

p

and
qðtÞ ¼ huðtÞvðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huðtÞ2ihvðtÞ2i

q ¼ huðtÞvðtÞi
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kfðtÞkdðtÞ

p

is the correlation coefficient between like components of velocities u and v.10 The mean of the absolute relative
velocity W at any time t is
hW iðtÞ ¼ 4ffiffiffi
3
p

p

ffiffiffi
S
p

:

So, the analytical mean droplet Reynolds number as implied by DLM for the non-evaporating case is
hRediðtÞ ¼
hW idp

mf

¼ 4ffiffiffiffiffiffi
3p
p

ffiffiffi
S
p dp

mf

¼ 4
ffiffiffi
6
pffiffiffi
p
p Stg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
sp

� �
1þ kdðtÞ

kfðtÞ
� 2qðtÞ

ffiffiffiffiffiffiffiffiffiffi
kdðtÞ
kfðtÞ

s !
qf

qd

� �vuut : ðB:4Þ
The above expression shows that hRedi can be written as a function of Stokes number Stg, ratio of s (=kf/ef)
and particle response time sp, and the kd/kf ratio. The same expression is true when a system reaches stationa-
rity, where kfðtÞ ¼ ke

f and kdðtÞ ¼ ke
d. It can be shown that the correlation coefficient q(t) decreases exponen-

tially to zero for DLM.
Using the analytical expression for the variance Eq. (B.3), one can compute the ratio ke

d=ke
f for various

Stokes numbers, which are in fact close to the DLM predictions reported in Fig. 3. For a Stokes number
Stg = 5, the ratio ke

d=ke
f � 0:52. Substituting this value in the expression for hRedi above, along with

kf ¼ ke
f ¼ 1:5u02 and the other non-dimensional ratios, the magnitude of hRedi � 1.97, which matches with

DLM predictions. Thus, predictions from DLM are consistent with analytical results.

Appendix C. Asymptotic diffusion coefficient estimate from DLM

For the droplet-laden stationary turbulence case considered in this study, an analytical solution to the evo-
lution of the dispersed phase velocity autocovariance given by Eq. (11) can be derived as follows. If we assume
that the fluid-phase TKE kf and the fluid-phase dissipation ef remain constant in artificially forced turbulence,
then the eddy turnover time s remains constant. Owing to the constant sp in the non-evaporating case and
ce the turbulence is isotropic, q(t) is the same for all the three like components of velocities.
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constant sg the Stokes number Stg remains constant. Consequently, s3 remains constant in time. The analytical
solution to Eq. (11) is thus (dropping the subscripts i for brevity)
hvðtsÞvðtÞi ¼ hvðtsÞvðtsÞie�t=ð2s3Þ
where t > ts and ts is the time at which the system reaches stationarity. Substituting the above expression into
Eq. (12) and in the limit t!1
adð1Þ ¼ 2hvðtsÞvðtsÞis3 ¼
4

3
kdðtsÞs3 ¼

4

3
ke

f

ke
d

ke
f

� �
s3:
The substitution kdðtsÞ ¼ ke
d has been made in the above development. Using the expression for analytical var-

iance derived in Appendix B, one can compute the ratio of equilibrium TKE ke
d=ke

f . For Stg = 5, it is found
that s3 = 56.9 and ke

d=ke
f ¼ 0:57, for which scaled ad = 1.15. For Stg = 0.4, it is found that s3 = 44.8 and

ke
d=ke

f ¼ 0:97, for which scaled ad = 1.54. Both these values for analytical ad are close to predictions from
DLM.

The reason for the large magnitude of ad compared to DNS results, especially at small Stokes numbers, lies
in limiting value of s3 reached as Stg! 0. In this limit, s3 evaluates to [(3/2)C0(ef/kf)]

�1, since 1/s1! 0 in the
one-way coupled limit assumed in this study. In this limit and for the parameters used in this study, the mag-
nitude of s3 = 43.2 and the corresponding dispersion coefficient ad(1) = 1.536. These results are consistent
with the predictions from DLM. It is noteworthy that in the limit Stg! 0, 2s3 evaluates to the Lagrangian
integral timescale (LIT) in the gas phase (Pope, 2000), and ad(1) = af(1) (cf. Fig. 5). It has been verified
in the DNS of Yeung and Pope (1989) (see also Pope (2000)) that the SLM specification of the drift coefficients
gives reasonable estimates for the LIT in the range of Rek = 40 � 60, which is the range of Rek studied in the
DNS. However, no information on the LIT is reported by the DNS (Mashayek et al., 1997) used in this study
for any quantitative comparisons of this timescale to be made.
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